Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.154
Filtrar
1.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702622

RESUMEN

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Asunto(s)
Biopelículas , Bagres , Nanopartículas del Metal , Plata , Nanopartículas del Metal/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Plata/química , Plata/farmacología , Animales , Humanos , Moco/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Células Vero , Proteínas de Peces/farmacología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Chlorocebus aethiops , Línea Celular Tumoral , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Candida albicans/efectos de los fármacos , Epidermis/metabolismo
2.
Int J Nanomedicine ; 19: 3891-3905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711613

RESUMEN

Introduction: The synthesis of nanoparticles using naturally occurring reagents such as vitamins, sugars, plant extracts, biodegradable polymers and microorganisms as reductants and capping agents could be considered attractive for nanotechnology. These syntheses have led to the fabrication of limited number of inorganic nanoparticles. Among the reagents mentioned above, plant-based materials seem to be the best candidates, and they are suitable for large-scale biosynthesis of nanoparticles. Methods: The aqueous extract of Moringa peregrina leaves was used to synthesize silver nanoparticles. The synthesized nanoparticles were characterized by various spectral studies including FT-IR, SEM, HR-TEM and XRD. In addition, the antioxidant activity of the silver nanoparticles was studied viz. DPPH, ABTS, hydroxyl radical scavenging, superoxide radical scavenging, nitric oxide scavenging potential and reducing power with varied concentrations. The anticancer potential of the nanoparticles was also studied against MCF-7 and Caco-2 cancer cell lines. Results: The results showed that silver nanoparticles displayed strong antioxidant activity compared with gallic acid. Furthermore, the anticancer potential of the nanoparticles against MCF-7 and Caco-2 in comparison with the standard Doxorubicin revealed that the silver nanoparticles produced significant toxic effects against the studied cancer cell lines with the IC50 values of 41.59 (Caco-2) and 26.93 (MCF-7) µg/mL. Conclusion: In conclusion, the biosynthesized nanoparticles using M. peregrina leaf aqueous extract as a reducing agent showed good antioxidant and anticancer potential on human cancer cells and can be used in biological applications.


Asunto(s)
Antioxidantes , Tecnología Química Verde , Nanopartículas del Metal , Moringa , Extractos Vegetales , Hojas de la Planta , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Células MCF-7 , Células CACO-2 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa/química , Antioxidantes/farmacología , Antioxidantes/química , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38696111

RESUMEN

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Asunto(s)
Antimaláricos , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Hojas de la Planta , Plasmodium falciparum , Plata , Terminalia , Plata/química , Plata/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/síntesis química , Nanopartículas del Metal/química , Terminalia/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plasmodium falciparum/efectos de los fármacos , Simulación del Acoplamiento Molecular , Humanos
4.
J Inorg Biochem ; 256: 112572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691971

RESUMEN

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 µM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.


Asunto(s)
Antifúngicos , Complejos de Coordinación , Pruebas de Sensibilidad Microbiana , Plata , Voriconazol , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Voriconazol/farmacología , Voriconazol/química , Plata/química , Plata/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Candida albicans/efectos de los fármacos , Candida/efectos de los fármacos , Cristalografía por Rayos X
5.
Sci Rep ; 14(1): 10224, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702368

RESUMEN

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Asunto(s)
Antibacterianos , Bacillus , Lactobacillus , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Plata/química , Plata/farmacología , Bacillus/metabolismo , Lactobacillus/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Sci Rep ; 14(1): 10284, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704421

RESUMEN

The use of magnetic metal nanoparticles has been considered in cancer treatment studies. In this study, BiFe2O4@Ag nanoparticles were synthesized biologically by Scenedesmus obliquus for the first time and their anticancer mechanism in a gastric cancer cell line was characterized. The physicochemical properties of the nanoparticles were evaluated by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic Light Scattering (DLS), and zeta potential analyses. Cell viability and nuclear damage were investigated by the MTT and Hoechst staining assays, respectively. Flow cytometry analysis was performed to determine the frequency of the necrotic and apoptotic cells as well as cell cycle analysis of the nanoparticles-treated cells. Physicochemical characterization showed that the synthesized particles were spherical, without impurities, in a size range of 38-83 nm, with DLS size and zeta potential of 295.7 nm and -27.7 mV, respectively. BiFe2O4@Ag nanoparticles were considerably more toxic for the gastric cancer cells (AGS cell line) than HEK293 normal cells with IC50 of 67 and 117 µg/ml, respectively. Treatment of AGS cells with the nanoparticles led to a remarkable increase in the percentage of late apoptosis (38.5 folds) and cell necrosis (13.4 folds) and caused cell cycle arrest, mainly at the S phase. Also, nuclear fragmentation and apoptotic bodies were observed in the gastric cancer cells treated with the nanoparticles. This study represents BiFe2O4@Ag as a novel anticancer candidate against gastric cancer that can induce cell apoptosis through DNA damage and inhibition of cell cycle progression.


Asunto(s)
Apoptosis , Nanopartículas del Metal , Scenedesmus , Plata , Neoplasias Gástricas , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Línea Celular Tumoral , Nanopartículas del Metal/química , Scenedesmus/efectos de los fármacos , Plata/química , Plata/farmacología , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Células HEK293 , Difracción de Rayos X
7.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714767

RESUMEN

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Asunto(s)
Nanopartículas del Metal , Compuestos de Plata , Nanopartículas del Metal/química , Animales , Humanos , Compuestos de Plata/química , Compuestos de Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Artemia/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tecnología Química Verde/métodos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Células Vero , Antifúngicos/farmacología , Antifúngicos/química , Plata/química , Plata/farmacología , Óxidos
8.
Arch Microbiol ; 206(6): 243, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700700

RESUMEN

The antibacterial effect of nanoparticles is mainly studied on the ensembles of the bacteria. In contrast, the optical tweezer technique allows the investigation of similar effects on individual bacterium. E. coli is a self-propelled micro-swimmer and ATP-driven active microorganism. In this work, an optical tweezer is employed to examine the mechanical properties of E. coli incubated with ZnO and Ag nanoparticles (NP) in the growth medium. ZnO and Ag NP with a concentration of 10 µg/ml were dispersed in growth medium during active log-growth phase of E. coli. This E. coli-NP incubation is further continued for 12 h. The E. coli after incubation for 2 h, 6 h and 12 h were separately studied by the optical tweezer for their mechanical property. The IR laser (λ = 975 nm; power = 100 mW) was used for trapping the individual cells and estimated trapping force, trapping stiffness and corner frequency. The optical trapping force on E. coli incubated in nanoparticle suspension shows linear decreases with incubation time. This work brings the importance of optical trapping force measurement in probing the antibacterial stress due to nanoparticles on the individual bacterium.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Pinzas Ópticas , Plata , Óxido de Zinc , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Óxido de Zinc/farmacología , Óxido de Zinc/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología
9.
PeerJ ; 12: e16708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715984

RESUMEN

The present work aimed at differentiating five Amaranthus species from Saudi Arabia according to their morphology and the ability in nanoparticle formulation. Biogenic silver nanoparticles (AgNPs) were synthesized from leaf extracts of the five Amaranthus species and characterized by different techniques. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of Amaranthus species. The nanoparticles (NPs) were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activity of the synthesized NPs was tested against Staphylococcus aureus, E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa using the agar well diffusion method. Spherical NPs varying in size and functional groups from the five plant species were demonstrated by TEM, DLS and FTIR analysis, respectively. Variations in NPs characteristics could be related to the phytochemical composition of each Amaranthus species since they play a significant role in the reduction process. EDX confirmed the presence of Ag in plant fabricated AgNPs. Antibacterial activity varied among the species, possibly related to the NPs characteristics. Varied characteristics for the obtained AgNPs may reflect variations in the phytochemical composition type and concentration among Amaranthus species used for their fabrication.


Asunto(s)
Amaranthus , Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Amaranthus/química , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Hojas de la Planta/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Microscopía Electrónica de Transmisión , Arabia Saudita , Bacterias/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos
10.
Mol Biol Rep ; 51(1): 633, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724835

RESUMEN

BACKGROUND: Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS: The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS: The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION: Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.


Asunto(s)
Docetaxel , Nanopartículas del Metal , Neoplasias de la Próstata , Fármacos Sensibilizantes a Radiaciones , Plata , Humanos , Docetaxel/farmacología , Masculino , Plata/farmacología , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Fármacos Sensibilizantes a Radiaciones/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Caspasa 3/metabolismo , Caspasa 3/genética , Antineoplásicos/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Cadherinas/metabolismo , Cadherinas/genética
11.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582926

RESUMEN

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Citrus/química , Escherichia coli/metabolismo , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Citrus sinensis/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
12.
J Diabetes Res ; 2024: 4873544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577302

RESUMEN

The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas del Metal , Ratas , Masculino , Animales , Estreptozocina/farmacología , Ácido Vanílico/farmacología , Ácido Vanílico/uso terapéutico , Plata/farmacología , Plata/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/uso terapéutico , Estrés Oxidativo
13.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 67-77, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650153

RESUMEN

Osteoinduction, and/or osteoconduction, and antibacterial characteristics are prerequisites for achieving successful bone grafting. This study aimed to coat bone allografts with silver nanoparticles and assess their antibacterial activity and biocompatibility compared to uncoated bone allografts. In this study, the bone allografts were coated with varying concentrations of silver nanoparticles (5 mg/l, 10 mg/l, and 50 mg/l) through a simple adsorption technique. Subsequently, the coated samples underwent characterization using SEM, FTIR, EDS, and XRD. The Minimal Inhibitory Concentration (MIC) of the silver nanoparticles was determined against Staphylococcus aureus and Streptococcus mutans. Bacterial growth inhibition was evaluated by measuring turbidity and performing a disk diffusion test. Moreover, qualitative investigation of biofilm formation on the coated bone allograft was conducted using SEM. Following this, MG-63 cell lines, resembling osteoblasts, were cultured on the bone allografts coated with 5 mg/l of silver nanoparticles, as well as on uncoated bone allografts, to assess biocompatibility. The MIC results demonstrated that silver nanoparticles exhibited antimicrobial effects on both microorganisms, inhibiting the growth of isolates at concentrations of 0.78 mg/L for Staphylococcus aureus and 0.39 mg/L for Streptococcus mutans. The bone allografts coated with varying concentrations of silver nanoparticles exhibited significant antibacterial activity against the tested bacteria, completely eradicating bacterial growth and preventing biofilm formation. The osteoblast-like MG-63 cells thrived on the bone allografts coated with 5 mg/l of silver nanoparticles, displaying no significant differences compared to both the uncoated bone allografts and the control group.  Within the limit of this study, it can be concluded that silver nanoparticles have a positive role in controlling graft infection. In addition, simple adsorption technique showed an effective method of coating without overwhelming the healing of the graft.


Asunto(s)
Aloinjertos , Antibacterianos , Biopelículas , Sustitutos de Huesos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Staphylococcus aureus , Streptococcus mutans , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Streptococcus mutans/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Humanos , Biopelículas/efectos de los fármacos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Aloinjertos/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Trasplante Óseo/métodos , Ensayo de Materiales , Línea Celular
14.
BMC Vet Res ; 20(1): 149, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643105

RESUMEN

This research work was planned to test biosafety of different nanomaterials on the different animals models. These nanoparticles were previously used as potential insecticides of mosquito larvae. The biosafety of these nanoproducts were evaluated on certain organs of non target animals that associated with mosquito breeding sites in Egypt. Animal organs such as the kidneys of rats, toads, and the fish's spleen were used as models to study the biological toxicity of these nanomaterials. After 30 days of the animals receiving the nanomaterials in their water supply, different cell mediated immune cells were assessed in these tissues. Both TNF-α and BAX immuno-expression were also used as immunohistochemical markers. Histopathology was conducted to detect the effect of the tested nanoproducts at the tissue level of the liver and kidneys of both the rats and toads. Green nanoemulsion of the lavender essential oil was relatively more effective, safe, and biodegradable to be used as insecticides against mosquito larvae than the metal-based nanomaterials.


Asunto(s)
Culicidae , Insecticidas , Nanopartículas del Metal , Ratas , Animales , Insecticidas/toxicidad , Plata/farmacología , Fitomejoramiento , Larva , Emulsiones
15.
ACS Appl Mater Interfaces ; 16(15): 18300-18310, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574271

RESUMEN

To tackle the proliferation of pathogenic microorganisms without relying on antibiotics, innovative materials boasting antimicrobial properties have been engineered. This study focuses on the development of graphene oxide/silver (GO/Ag) nanocomposites, derived from partially reduced graphene oxide adorned with silver nanoparticles. Various nanocomposites with different amounts of silver (GO/Ag-1, GO/Ag-2, GO/Ag-3, and GO/Ag-4) were synthesized, and their antibacterial efficacy was systematically studied. The silver nanoparticles were uniformly deposited on the partially reduced graphene oxide surface, exhibiting spherical morphologies with an average size of 25 nm. The nanocomposites displayed potent antibacterial properties against both gram-positive bacteria (S. aureus and B. subtilis) and gram-negative bacteria (E. coli and S. enterica) as confirmed by minimum inhibition concentration (MIC) studies and time-dependent experiments. The optimal MIC for Gram-positive bacteria was 62.5 µg/mL and for Gram-negative bacteria was 125 µg/mL for the GO/Ag nanocomposites. Bacterial cells that encountered the nanocomposite films exhibited significantly greater inhibitory effects compared to those exposed to conventional antibacterial materials. Furthermore, the cytotoxicity of these nanocomposites was assessed using human epithelial cells (HEC), revealing that GO/Ag-1 and GO/Ag-2 exhibited lower toxicity levels toward HEC and remained compatible even at higher dilution rates. This study underscores the potential of GO/Ag-based nanocomposites as versatile materials for antibacterial applications, particularly as biocompatible wound dressings, offering promising prospects for wound healing and infection control.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Humanos , Plata/farmacología , Staphylococcus aureus , Escherichia coli , Óxidos/farmacología , Antibacterianos/farmacología , Grafito/farmacología
16.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642138

RESUMEN

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Asunto(s)
Compuestos Férricos , Nanopartículas del Metal , Satureja , Plata/farmacología , Plata/metabolismo , Nanopartículas del Metal/química , Antifúngicos/farmacología , Satureja/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Difracción de Rayos X , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología
17.
Chemosphere ; 355: 141836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561160

RESUMEN

The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.


Asunto(s)
Hypocreales , Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Proteoma , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/toxicidad , Antibacterianos/química , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
18.
Curr Microbiol ; 81(5): 135, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592462

RESUMEN

Urinary tract infections are one of the most common infections worldwide. Given the increasing antibiotic resistance, monitoring antibiotic sensitivity patterns is crucial. Furthermore, silver nanoparticles synthesized from Stachys schtschegleevii can exhibit potent antibacterial, antibiotic, and antifungal properties. The plant S. schtschegleevii was collected from its natural habitat, dried, and its extract was then exposed to silver nitrate. Under specific conditions, silver nanoparticles were synthesized from it. Subsequently, the production and validation of silver nanoparticles were confirmed through techniques such as FTIR analysis, UV-Vis analysis, TEM, SEM, EDX analysis, and zeta potential analysis. In the in vitro section of the research, the impact of the extracted silver nanoparticles on bacteria isolated from patients' urine and standard bacterial culture (control) was assessed using the disc diffusion and MIC test methods. The results of the analyses are FTIR (high protein content; proteins and phenols serve as stabilizing agents), UV-Vis (peak of 460 nm), TEM (spherical to occasionally elliptical shapes), SEM (sizes: 26 to 72 nm), EDX (peak at 3 keV), and zeta potential (- 15.76 ± 0.05 mV). The effect of silver nanoparticles by disc diffusion method (mm) is Enterococcus faecalis = 18.31 ± 0.35, Escherichia coli = 21.51 ± 0.61, and Staphylococcus aureus = 19.02 ± 1.28, and by MIC test (µg/ml), E. faecalis = 19, E. coli = 18, and Staphylococcus aureus = 16. Antibacterial activity of the silver nanoparticles synthesized from S. schtschegleevii means that these herbal nanoparticles treat urinary tract infections caused by some of the test isolates.


Asunto(s)
Nanopartículas del Metal , Stachys , Humanos , Escherichia coli , Plata/farmacología , Antibacterianos/farmacología , Bacterias , Extractos Vegetales/farmacología
19.
J Pharm Pharm Sci ; 27: 12674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606395

RESUMEN

Introduction: The extract from the Mango Seed Kernel (MSK) has been documented to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa. This suggests that biomaterials containing MSK extract could be a viable alternative to conventional wound treatments, such as nanocrystalline silver dressings. Despite this potential, there is a notable gap in the literature regarding comparing the antibacterial effectiveness of MSK film dressings with nanocrystalline silver dressings. This study aimed to develop film dressings containing MSK extract and evaluate their antibacterial properties compared to nanocrystalline silver dressings. Additionally, the study aimed to assess other vital physical properties of these dressings critical for effective wound care. Materials and methods: We prepared MSK film dressings from two cultivars of mango from Thailand, 'Chokanan' and 'Namdokmai'. The inhibition-zone method was employed to determine the antibacterial property. The morphology and chemical characterization of the prepared MSK film dressings were examined with scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR), respectively. The absorption of pseudo-wound exudate and water vapor transmission rate (WVTR) of film dressings were evaluated. Results: The results showed that 40% of MSKC film dressing had the highest inhibition zone (20.00 ± 0.00 mm against S. aureus and 17.00 ± 1.00 mm against P. aeruginosa) and 20%, 30%, and 40% of MSKC and MSKN film dressings had inhibition zones similar to nanocrystalline silver dressing for both S. aureus and P. aeruginosa (p > 0.05). In addition, all concentrations of the MSK film dressings had low absorption capacity, and Chokanan MSK (MSKC) film dressings had a higher WVTR than Namdokmai MSK (MSKN) film dressings. Conclusion: 20%, 30%, and 40% of MSK film dressing is nearly as effective as nanocrystalline silver dressing. Therefore, it has the potential to be an alternative antibacterial dressing and is suitable for wounds with low exudate levels.


Asunto(s)
Quemaduras , Mangifera , Antibacterianos/uso terapéutico , Plata/farmacología , Plata/química , Tailandia , Staphylococcus aureus , Bacterias Gramnegativas , Bacterias Grampositivas , Vendajes
20.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611727

RESUMEN

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Asunto(s)
Antiinfecciosos , Nanopartículas , Plata/farmacología , Gossypium , Textiles , Antiinfecciosos/farmacología , Escherichia coli , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA